COMPUTER SCIENCE MAJOR, CONCENTRATION IN BIG DATA ANALYTICS

Data is being generated at high speed, in large volumes, and by a variety of systems around the world. In such a data-driven and information-centric world, the ability to analyze information and make informed decisions is crucial to every field including business, medicine, the sciences, entertainment, and government. This concentration provides students with the skills, techniques, and knowledge needed to pursue a career in this field.

Program Outcomes for the Major in Computer Science, Concentration in Big Data Analytics

Graduates of the Big Data Analytics Concentration will be able to (in addition to the Computer Science Major Program Learning Outcomes):

- Apply basic models, methods, programming languages, and tools for data storage, management and processing.
- Apply current data visualization techniques, programming languages and tools.
- Apply basic statistical data analysis methods, programming languages and tools.
- Apply cloud and distributed computing techniques, tools and services to solve real-word Big Data problems.
- Evaluate, select and apply data mining models, methods and tools for real-word problems.
- Evaluate, select and apply tools and technologies to analyze and solve Big Data problems.

A laptop computer running Windows, macOS, or Linux is required for courses in the Computer Science program. 16GB of memory is suggested. A Chromebook will not work.

Requirements for the Concentration in Big Data Analytics

Code	Title	Credits
Core Courses		(38 credits)
CS-101	Basics of Computer Science	3
CS-140	Introduction to Programming	4
CS-155	Computer Networking and Security	3
CS-225	Discrete Structures I	3
CS-242	Data Structures	3
CS-248	Algorithm Analysis	3
CS-254	Computer Organization and Architecture	4
CS-282	Unix Systems Programming	3
CS-286	Database Design and Applications	3
CS-295	Discrete Structures II	3
CS-348	Software Process Management	3
CS-373	Operating Systems	3
Elective Courses		(3 credits)
Credits in Computer Scien	3	
Ancillary Requirements ²		(31 credits)
CM-110	Public Speaking	3
EN-252	Technical Writing	3

- Up to 3 credits of Internship (CS-498) and up to 3 credits of Independent Study (CS-499) may be used to satisfy the major elective requirements.
- ² 31 credits (may apply to LASC requirements). These ancillary courses cannot be taken on a pass/fail basis
- 3 Students planning a Mathematics minor or a Computer Science/ Mathematics double major should take MA-302.
- 4 Students planning a Mathematics minor or a Computer Science/ Mathematics double major should take math courses required for the Mathematics minor/major.

Department of Computer Science: Big Data Analytics Concentration Sample Timeline for Completion of Degree

This four-year plan assumes a Math Placement score of at least 6.

Year One		
Semester One		Credits
CS-101	Basics of Computer Science	3
EN-101	College Writing I	3
MA-190	Pre-calculus (or Math/Science Course) 1,2	4
LASC	First-Year Seminar (FYS)	3
LASC	LASC Elective (CON) ³	3
	Credits	16
Semester Two		
CS-140	Introduction to Programming	4
CS-155	Computer Networking and Security	3
EN-102	College Writing II	3
MA-200	Calculus I	4
	Credits	14
Year Two		
Semester Three		
CS-225	Discrete Structures I	3
CS-242	Data Structures	3

Database Design and Applications

Technical Writing

3

3

CS-286

EN-252

UR-230 or PH-134	Technology, Public Policy and Urban Society	3
	or Computing Ethics	
	Credits	15
Semester Four		
CS-282	Unix Systems Programming	3
CS-295	Discrete Structures II	3
CM-110	Public Speaking	3
LASC	LASC Elective (GP) ³	3
LASC	LASC Elective (CA)	3
	Credits	15
Year Three		
Semester Five		
CS-248	Algorithm Analysis	3
CS-254	Computer Organization and Architecture	4
CS-348	Software Process Management	3
MA-150	Statistics I 4	3
or MA-302	or Probability and Statistics	
LASC	Lab Science (DAC)	3
	Credits	16
Semester Six		
CS-373	Operating Systems	3
CS-383	Cloud, Parallel an Distributed Computing	3
LASC	Math or Science course ²	3-4
LASC	Lab Science (NSP)	4
LASC	LASC Elective (USW) ³	3
	Credits	16-17
Year Four		
Semester Seven		
CS-453	Data Mining	3
LASC	LASC Elective (NSP) ³	4
SELECT	General Elective	3
SELECT	General Elective	3
	Credits	13
Semester Eight		
CS-483	Big Data Analytics Capstone	3
LASC	LASC Elective (ICW) ³	3
SELECT	300+ Level Elective in Major	3
SELECT	General Elective	3
SELECT	General Elective	3
	Credits	15
	Total Credits	120-121

If the students math placement score requires her/him to take MA-190, it should be taken this semester, so that MA-200 can be taken in the Spring semester. EN-101 & EN-102 satisfy LASC writing requirements.

All Math and Science courses must be selected from a list of department approved courses.

Students planning a Mathematics minor or a Computer Science/ Mathematics double major should take MA-302.

Note:

The sequence of LASC courses marked with 3 is a suggestion but serves as a reminder that LASC designated courses must be taken to satisfy the LASC requirements.

Once LASC requirements are satisfied, students may select general requirements. Please refer to the University Catalog for specific curriculum details regarding major and LASC requirements.

Students are required to meet with their academic advisor to review their courses for the upcoming semester. A minimum of 120 credits is required for graduation. First-year and transfer students with 45 or fewer credits at the time of admission shall complete two academic programs (a major/major or major/minor) to qualify for graduation. For more information, please view the MajorPlus section of this catalog.

The sequence of LASC courses marked with ³ is a suggestion but serves as a reminder that LASC designated courses must be taken to satisfy the LASC requirements